新闻中心

行业资讯
公司动态
精选干货
功率器件发展火热,华为、小米等大厂加大投入!
近段时间,功率器件的关注热度再次升级,除了斯达半导、捷捷微电等功率器件厂商正加大产能建设,华为、小米、OPPO等手机厂商也在积极投资布局,功率器件相关热门的第三代半导体材料碳化硅和氮化镓更是被写入了“十四五”规划。 近几年新能源汽车、5G基站和变频家电强势发展,给功率器件带来了新的增长机会,另外快充,特高压、城际高铁交通等对功率器件的需求也在快速增长,据Yole预测,到2025年全球功率器件市场或达225亿美元,2019到2025年复合增长率4.28%。 在新兴应用需求及政策的支持推动下,国内功率器件近年来发展也是相当迅速,据芯谋研究统计,中国企业有5价进入全球前20名,其中安世半导体更是进入前十,位居第九。 全球芯片短缺功率器件厂商积极扩大产能建设 近年来全球半导体面临短缺和涨价的局面,功率器件也不例外,新洁能、士兰微、捷捷微电等厂商之前都发布过涨价通知,同时受益于市场需求旺盛,不少厂商近几个月甚至是整个2020年都取得了相当好的业绩。 比如,捷捷微电近日发布2020年度报告显示,公司2020年实现营业收入10.11亿元,同比增长49.99%;归属于上市公司股东的净利润2.83亿元,同比增长49.45%。闻泰科技近日也表示受益于对全球消费品和汽车市场的持续渗透,公司功率半导体业务从2020年第三季度开始实现强劲增长。 为了解决供货紧张的情况,很多功率器件厂商正在加快项目建设及产能扩展。捷捷微电近日表示,其在南通总投资25亿元的高端功率半导体产业化项目正式开工,该项目分为两期,项目建成后,一期和二期都将能形成年产TrenchMOS276000片、LVSGT144000片、MVSGT180000片的生产能力。 东芝也正在扩产其电动车功率半导体产能,据外媒报道,东芝将在位于日本石川县的主力工厂引进能大量生产纯电动汽车(EV)等使用的功率半导体制造设备,将计划投资约投资约250亿日元,将石川工厂的产能提高2成。 功率器件主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上),比如在新能源汽车领域,功率器件将电力高效转化成动力可以降低电动车等的耗电量。 功率器件大致分为几种:二极管、晶闸管、MOSFET和IGBT。其中二极管和晶闸管现在较少被谈到,不过上文提到的捷捷微电,其晶闸管业务占比较高,2020年营业收入占比达到42.11%,对晶闸管的依赖程度较高。 现在业界谈到较多的功率器件是MOSFET和IGBT,其中MOSFET在功率器件中占比较大,大概在41.18%,IGBT的市场占比大概是30.10%。因为优势不一样,MOSFET和IGBT的应用领域也因此有所不同。 被写入“十四五”规划第三代半导体功率器件未来可期 虽然现在全球90%以上的芯片和器件是基于硅材料生产,但是随着5G、新能源汽车等新兴应用的出现,氮化镓(GaN)、碳化硅(SiC)等第三代半导体材料兴起,并被写入“十四五”规划,第三代半导体功率器件也凭借独特优势逐渐获得市场青睐。 碳化硅(SiC)功率器件有SiC二极管、SiCMOSFET,SiC二极管通常是SiC肖特基二极管,主要用于在600V以上领域替代传统的快恢复二极管。SiCMOSFET可部分取代硅基IGBT,SiCMOSFET具有较高的击穿电场强度,比传统SiMOSFET更耐高压,同时拥有更高的开关频率和下降的通态电阻,开关速度比SiIGBT快,损耗比SiIGBT小,在高频、高电压领域将取代SiIGBT和SiMOSFET。 根据智研咨询数据显示,SiC功率器件在电动汽车、电源和光伏三大终端市场的应用占比合计约为67%,其中电动汽车领域占比最大,达到30%,电源和光伏领域占比依次为22%、15%。新能源汽车被认为是SiC功率器件应用的主要驱动力,被大量运用在车载充电器、DC-DC转换器和牵引逆变器等方面。 有不少厂商在碳化硅领域取得了不错进展,泰科天润在今年1月初表示,其位于浏阳经开区(高新区)内的项目,90%的生产设备已到位,而大部分设备处于工艺调试阶段,该项目一期投资5亿元,主要投入6英寸碳化硅基电力电子芯片生产线,项目建成满产后可实现6万片/年的6英寸碳化硅功率芯片生产及销售,公司董事长陈彤称,力争春节前投产。 另外斯达半导也在积极推进,该公司本月初发布公告称,拟通过定增募资的方式,募集资金不超过35亿元,计划向高压特色工艺功率芯片和SiC(碳化硅)芯片投入20亿元,在本次总募资中占比为57%左右。斯达半导是国内IGBT龙头企业,近年来受高铁、新能源汽车等多方市场需求增长影响,公司业绩快速提升。 资本对SiC功率器件企业也青睐有加,根据近日消息,SiC功率器件研发商飞锃半导体完成新一轮融资,该公司成立于2018年6月,主营碳化硅SiC功率器件研发,主要应用于消费电子、汽车及工业领域。上文提到的泰科天润也在去年的5月宣布完成融资。 氮化镓适用于超高频功率器件领域,GaN器件最高频率超过106Hz,功率在1000W左右,开关速度是SiCMOSFET的四倍,GaN定位在高功率、高电压领域,集中在600V-3300V,中低压集中在100V-600V,主要应用于雷达、笔记本电源适配器等。 快充是氮化镓的一大发展领域,据报道,从2018开始就有不少氮化镓快充充电器陆续量产,今年1月份获得中国第一位置的OPPO,近日就与华勤联合战略投资了氮化镓(GaN)芯片厂商威兆半导体,威兆半导体成立于2012年12月,产品主要为开关电源充电器用的大功率MOSFET场效应管,此外还生产超低压降肖特基、快恢复二极管及器件模块化应用设计,致力于提高产品能效比。 小结 就如上文所言,功率器件市场未来有不错的增长空间,当前英飞凌、安森美、意法半导体等国际大厂占据较大市场,国内厂商在二极管、晶闸管及部分MOSFET上占据不错市场,在某些中高端产品方面还有很大的提升空间,不过很明显,包括新洁能、比亚迪、斯达半导、捷捷微电等在内非常多优秀的企业正在日渐成长,未来值得期待。
进口芯片涨价幅度20%起,企业该如何抉择!
据报道,芯片生产存在原材料紧缺,产能满负荷的情况。据了解,以往企业采购光刻胶的量每次都在100多公斤,近期由于原材料紧缺,企业每次只能买到很少的量(10-20公斤)。 而在价格方面,由于供应紧张,芯片以及核心原材料也随之水涨船高。今年1-2月仅江苏昆山口岸进口的集成电路就超过了100亿元,在数量基本和去年持平的情况下,进口的金额增长了20%,所以可见,芯片的价格仍然在上涨。 神达集团昆达电脑科技(昆山)采购经理以Microchip单片机为例,“比如像这个MCU,基本上在市场上供应的交期都在20-30周之间,价格现在普遍看涨,基本上涨价幅度在5%-10%左右,有一些甚至加价也很难抢到货物。” 去年开始,受5G手机芯片用量大幅提升和关键厂商大幅备货影响,芯片出现明显供不应求,而今年受汽车等行业复苏的推动,部分下游仍在持续追单,导致供不应求进一步加剧,而整体供需缺口短期很难根本性改变,预计芯片缺货或将持续一年以上。 中美贸易战加上疫情的影响,国外芯片的涨价幅度已经难以接受了,国内商家一定要找到合适的替代才能度过难关。
日本地震现连锁反应 半导体光刻胶供应告急
证券时报网讯,据报道,日本东北213强震导致日商主导约八成市场的半导体关键耗材光刻胶供应告急,包括信越等主要供应商生产与海外供货受阻,信越更宣布关闭厂区。业界消息称,信越化学光刻胶产品的中国台湾代理商崇越将调涨新合约报价,涨幅约10%。 华创证券指出,全球光刻胶市场由日本大厂主导,占据八成市场,罕有价格波动。其中信越包办超过两成,中国台湾有超过50%半导体厂先进制程与新制程采用信越的光刻胶产品。近期半导体供不应求,光刻胶是台积电、联电等晶圆厂生产必备关键耗材。随着光刻胶供应告急,恐使得半导体缺货更严重,预计将加重电子产业链缺货涨价情绪,国内厂商有望迎来替代机遇。 来源:证券时报(百家号)
欧洲要复兴半导体行业,希望在于与中国合作
欧洲十多个国家已经签署了《欧洲处理器和半导体科技计划联合声明》,宣布未来两三年内将投入 1450 亿欧元(约合人民币 11527.645 亿元)用于半导体产业,此一举动可谓意义重大,柏铭科技认为欧洲要复兴半导体行业,希望在于与中国合作。 近几十年来欧洲在数字芯片时代鲜有成绩,在通信芯片行业主要亚洲芯片企业和美国芯片企业争锋,而且从目前来看欧洲芯片企业已很难有机会,欧洲芯片企业占据优势的是模拟芯片和汽车半导体。 在模拟芯片市场,全球前十大模拟芯片企业中有英飞凌、意法半导体、恩智浦等数家芯片企业,并且这三家企业排名靠前,分别位居全球第三、第四和第六名,可见这三家企业在模拟芯片行业还是非常有实力的。 获益于欧洲诞生了宝马、奔驰、大众、标致等全球知名的汽车企业,欧洲在汽车半导体行业建立领先优势,英飞凌和恩智浦轮流坐上全球最大的汽车半导体老大位置,此外欧洲还有博士、克虏伯、西门子等在汽车半导体行业占有一定地位的企业。 欧洲芯片企业的这些优势恰恰可以与中国形成互补关系。在模拟芯片行业,中国刚刚起步,据分析数据指中国产的模拟芯片占国内市场的份额只有10%左右,由于华为的遭遇,中国各个行业都希望寻找美国芯片的替代,而实力雄厚的欧洲模拟芯片企业可望从中获益。 事实上从去年下半年以来,中国手机企业就增加了对欧洲模拟芯片的采用比例,从IC insights公布的数据可以看出获益于中国手机企业的支持,英飞凌、意法半导体、恩智浦的营收下滑幅度远小于美国芯片企业德州仪器、ADI等。 在汽车半导体行业,中欧合作开始取得了一些成果,恩智浦已投资了一家中国自动驾驶技术公司,英飞凌和恩智浦都已与中国领先的自动驾驶技术企业百度Apollo达成合作,显示出欧洲芯片企业希望依托于它们已在汽车半导体行业所取得的技术优势介入中国市场。 中国已发展成为全球最大的汽车市场,中国各个汽车企业以及相关的科技企业都在努力发展自动驾驶等技术,然而中国的汽车半导体较为薄弱,这对于欧洲的汽车半导体企业来说无疑是巨大的机会。 在过往中国和欧洲已进行了许多的科技合作,例如中欧成功合作制定了4G技术标准LTE并成为全球唯一的4G技术标准,中欧在半导体行业存在巨大的合作机会,在当前的国际环境中,中欧合作共赢或许会成为双方的共识。
国内外功率半导体器件的发展
在特高压直流输电技术需求的驱动下,我国以晶闸管为代表的半控型器件技术已经成熟,水平居世界前列,6英寸的晶闸管已广泛用于高压直流输电系统,并打入国际市场,形成了国际竞争力。 硅基IGBT器件 国际上,2500V以上大功率IGBT主要供货商有英飞凌、ABB、三菱和东芝。ABB致力于器件开发、装置研制及工程应用,焊接型IGBT已有6500V/750A、3300V/1500A和1700V/3600A系列;压接型IGBT已有4500V/2000A、4500V/3000A系列,4500V/2000A已有工程应用,4500V/3000A仍处于试用与推广阶段。东芝的压接型IGBT采用圆形陶瓷管壳封装,主要有4500V/1500A和4500V/2100A系列,4500V/1500A在南澳柔性直流工程有应用。 国内,研究机构与国内的芯片代工厂合作开发出3300V~6500V系列IGBT和FRD芯片。有一两家企业已独立开发出3300V/1200A,3300V/1500A,4500V/1200A系列焊接型IGBT产品并已得到不同程度的批量应用,目前正开发3300~4500V/2000~3000A压接型IGBT。 总体来看,以ABB为代表的国际大公司在高压大功率IGBT方面一直处于引领者的地位,其器件技术水平比国内要领先一代左右,在市场占有方面处于垄断地位。而国内功率半导体研发制造企业只在一些单项技术方面取得了突破,尚未实现全产业链的整体突破,尚不具备与国外大公司相抗衡的能力。     SiC器件 与传统硅器件相比,SiC器件有着更加优良的综合性能,如高电压、高结温等。20世纪90年代,美国、日本和德国就开始对SiC材料和功率器件相关技术进行研究,各种SiC功率器件相继问世。在SiC材料方面,SiC材料微孔问题已得到解决,SiC衬底材料已由4英寸逐渐过渡到6英寸。在SiC器件方面,国外SiC中低压器件已实现产品化,高压器件还处于样品研发与试用阶段。CREE和ROHM已推出1.2kV/300A全SiC模块产品,三菱公司研发出1.7kV/1200A混合模块和3.3kV/1500A全SiC功率模块样品。在SiC器件高压应用方面,CREE、POWEREX和GE联合研制一台基于SiC-MOSFET的容量为1MVA、开关频率达20kHz的单相电力电子变压器。 国内在SiC材料方面,已研制出6英寸SiC衬底样品;外延方面,4~6英寸外延材料已初步形成产品;SiC器件方面,已研制出1.2kV/200A半桥结构的全SiC功率模块,3.3kV/600A混合模块样品;SiC器件高压应用方面,已研制出基于SiCMOSFET的200kVA换流器样机。 在SiC器件领域,国外大公司仍是行业主导,在中低压中小功率SiC器件方面已形成完整产业链,出货量呈倍增态势,正在步入成熟期。国内现阶段基本以研究为主,集中于SiC技术链条中的个别点上进行攻关,总体看综合实力不强,在材料和外延方面尚存在短板,与国际先进水平还有一定差距。
微软为何要自研芯片
微软正在为其服务器以及未来的Surface设备自行设计基于Arm的处理器芯片。报道称,这些服务器芯片将用于微软Azure云服务中,另外,微软还在为其某些Surface设备设计“另一种芯片”。微软为何要自研芯片?对微软来说,过去几十年依赖的是Wintel联盟。而随着ARM在移动领域崛起,这个联盟正在遭遇挑战。Wintel联盟所依仗的是,是X86生态系统。从80年代开始,无数软件都是围绕着X86指令集开发的,微软也一直保留着足够的兼容性,Office95可以在2020年的Win10系统中正常运行。但是,随着ARM在移动领域的崛起。在一些不需要兼容性的领域,X86已经没有优势了。   而微软恰恰,既有云计算业务,也有移动业务。在这些业务继续用X86竞争是失败的。在云计算领域,因为生态系统关系很小,ARM在算力成本功耗的优势非常明显,做云计算的厂商纷纷换用ARM解决方案。微软跟进完全正常。自研服务器芯片以提高性价比相比于自研电脑处理器芯片,微软将基于Arm自研服务器芯片更加有趣。此前,微软在云计算方面的竞争对手亚马逊已经在一年前推出了自己的基于Arm的Gravition2处理器芯片,提高性能与成本优势并进入正轨,他们认为自己的芯片更适合他们的某些需求,与主要由英特尔提供的现成芯片相比,具有成本和性能优势,微软可能出于同样的考虑而开始自研芯片。2017年,微软宣布与高通和Cavium在内的多家Arm供应商合作,尝试在Windows Server上运行Arm芯片,但仅用于微软自己的数据中心,目的是评估Azure服务,微软认为基于Arm的服务器芯片对于内部的云服务应用程序十分有效,例如搜索、存储、大数据与机器学习等工作负载。   对于是否会自研服务器芯片,微软发言人Frank Shaw表示:“由于芯片是技术的基础,我们将继续在设计、制造和工具等领域加大投资,同时也促进和加强与众多芯片提供商的合作伙伴关系。”近几年,微软加大芯片工程师的招聘力度,比如从英特尔AMD、英伟达等芯片公司挖人,而高通在放弃服务器芯片业务后,大量人才也纷纷流失。在微软最近发布的一份帖子中,提到了微软在其数据中心内围绕ARM64服务器进行的工作,这可能将是公司在2017年宣布的计划的延续。如今,越来越多的公司开始寻找新的解决方案以应对支撑云计算和智能手机生产的大量数据,人工智能芯片设计自动化之后,引发了新芯片设计的狂潮,尤其是对于拥有巨型数据中心的公司而言,对功耗的考虑日益重要,这时基于Arm的芯片就成为更加节能更加优秀的选择。
各功率器件厂商在加码布局 SiC 领域
12 月 24 日讯 在新能源汽车缺少芯片的背景下,国内相关企业也开启扩大功率器件产能之路。近日比亚迪半导体产品总监杨钦耀日前表示,比亚迪车规级的 IGBT 已经走到 5 代,碳化硅 mosfet 已经走到 3 代,第 4 代正在开发当中。目前在规划自建产线,预计到明年有自己的产线。 目前,比亚迪拥有包含芯片设计、晶圆制造、封装测试和下游应用在内的一体化经营全产业链。比亚迪表示,经过十余年的研发积累和于新能源汽车领域的规模化应用,比亚迪半导体已成为国内自主可控的车规级 IGBT 领导厂商。此外,比亚迪半导体也拥有多年的研发积累、充足的技术储备和丰富的产品类型,与来自汽车、消费和工业领域的客户建立了长期紧密的业务联系。 比亚迪半导体表示,将以车规级半导体为核心,同步推动工业、消费等领域的半导体发展,致力于成长为高效、智能、集成的新型半导体供应商。     事实上,除了比亚迪自建 SiC 产线外,国内其他的功率器件厂商也在加码布局 SiC 领域。 产业链以欧美日为主,国产替代空间较大。SiC 生产过程分为 SiC 单晶生长、外延层生长及器件制造三大步骤,对应的是衬底、外延、器件与模组三大环节。目前全球 SiC 产业格局呈现美国、欧洲、日本三足鼎立态势,其中美国衬底全球独大。而比亚迪半导体的突破,恰恰打开了国产工控和汽车级 MCU 芯片的大门。 近日,斯达半导发布关于投资建设全碳化硅功率模组产业化项目的公告称,公司拟在嘉兴斯达半导体股份有限公司现有厂区内,投资建设全碳化硅功率模组产业化项目,本项目计划总投资 22,947 万元,投资建设年产 8 万颗车规级全碳化硅功率模组生产线和研发测试中心,项目将按照市场需求逐步投入。
芯片涨价,不止台积电
据市场研究机构Strategy Analytics最新报告显示,2019年全球排名前五的汽车半导体厂商分别为英飞凌、恩智浦、瑞萨电子、德州仪器和意法半导体。 而受制于疫情和对芯片需求预期不足,在此前大众爆出停产消息时,恩智浦和瑞萨电子就已经陆续放出产能吃紧的消息。 恩智浦在致客户的一封信中表示,为解决供应商带来的不可预见的成本增长,公司“很不情愿地”提高所有产品的价格。 瑞萨电子也于11月30日向客户发送提价通知,称由于原材料和包装基板成本增加,拟从2021年1月1日开始上调部分模拟和电源产品价格。瑞萨还解释称,公司近期面临库存、成本增加压力和产品运输风险,不得不上调价格来保证这些产品得到持续的投入和生产。 作为全球首屈一指芯片代工巨头,台积电都要面临涨价,其他排名前列的汽车半导体厂商自然也是难以幸免。     对于这股全行业的芯片荒,中汽协结合调研企业的反馈,总结出以下几个原因: 一来,是近年来全球芯片行业产能投资相对保守,供需不平衡问题在新冠肺炎疫情前就已经有所表现,而疫情的爆发则加剧了产能投资的谨慎。上半年芯片行业对消费电子和汽车市场预测偏保守,对今年下半年中国汽车市场发展趋好预判及准备不足,因此从下半年中国市场逆势增长渐入佳境的11月开始,芯片缺口开始显现。 其次,在5G技术发展推动之下,今年消费电子领域对芯片的需求在快速增加,芯片产能遇到挑战,抢占了部分汽车芯片的产能。 且这种趋势在2021年可能会进一步加剧,同时许多芯片领域制造商都在削减汽车行业必要的资本开支,提升价格,降低汽车行业芯片的生产配额。据媒体报道,台积电2021年先进制程产能已经被 “预订一空”。其中苹果 iPhone 应用处理器及 Arm 架构电脑处理器扩大量产规模,占据了台积电5nm芯片超过八成产能。     此外,欧洲和东南亚受第二波新冠肺炎疫情的影响,主要芯片供应商降低产能或停工事件陆续发生,进一步加剧了芯片供需失衡。 而更本质的原因在于,汽车电动化、智能化、网联化程度在不断提高,车用芯片的单车价值持续提升,推动全球车用芯片需求将快于整车销量增速。 需求量不断爆发,产能却被削弱被瓜分,汽车芯片想不缺都难。
  • 1
  • 2
  • 3
你所想知道的小芯片
在半导体工业生产中,晶片是设计用于与别的晶片融合的光伏电池晶片。这种模貝能够以不一样的方法组成在一起,包括竖直层叠,随后将这种模貝安裝到单独基钢板层上,随后封裝。单独芯片中间的互联能够根据多种多样方法完成,包括电极连接线和应用金属材料埋孔的立即联接。     应用芯片的半导体元器件一般将其设计分为关键的子电源电路,包括仿真模拟前端开发、CPU、储存器和GPU。尽管芯片愈来愈火爆,但与应用单独半导体的规范片式设计对比,芯片依然是一个目标市场。 殊不知,现阶段晶体管的经营规模,现在在10纳米技术下列,这代表着半导体材料轧钢厂必须十分整洁,空气中的尘土要尽量少(每立方空气中最少要有10个尘土顆粒)。这是由于尘埃粒子着陆在10nm晶体管上不但会毁坏该晶体管,并且会因为尘埃粒子的尺寸而危害周边数千个晶体管(记牢,尘埃粒子比10nm晶体管大好多个量级)。中小型晶体管遭遇的第二个难题是半导体材料中的单独点缺陷很有可能造成 晶体管常见故障。因而,一个拥有 难以想象的小晶体管的芯片,其分子结构基本上不可以有一切点缺陷,由于这会造成 芯片出現常见故障的概率很高。 提升 晶体管规格较小的芯片的生产量能够根据减少芯片的总规格来完成;可是,这会造成 安裝在单独芯片上的晶体管更少。假如每一个芯片的物理学规格提升,它将容许大量的晶体管,因而更强劲的电源电路,但結果是每一个芯片的成本上升,由于大量的芯片因常见故障而被丢掉。     一个解决方法是应用小芯片,这是一个早已刚开始越来越愈来愈时兴的解决方法。小芯片,是更小的作用芯片,能够运用当代的10纳米技术下列晶体管作用,容许强劲的繁杂作用。即便如此,智能终端将好几个芯片集成化到一个独立的封裝中,最后的結果是一个功能齐全、晶体管总数高的机器设备,进而降低了不成功芯片的总数。这相反又减少了模貝的最后成本费,并使生产量利润最大化。
功率半导体器件分类
功率半导体器件分类 按照电力电子器件能够被控制电路信号所控制的程度分类: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),PowerMOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、PowerMOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、PowerMOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.双极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.单极型器件,例如PowerMOSFET、SIT、肖特基势垒二极管; 3.复合型器件,例如MCT(MOS控制晶闸管)、IGBT、SITH和IGCT。      
特诺   TNPF20N65   封装TO-220F
特诺   TNPF20N65   封装TO-220F     硅N沟道增强 VDMOSFET,是通过自对准平面技术获得的 降低了传导损耗,改善了开关性能 性能和增强雪崩能量。晶体管 可用于系统的各种电源开关电路 小型化、高效率。包装形式是 TO-220F,符合RoHS标准。   特点:l快速切换 低导通电阻(Rdson≤0.50Ω)低栅电荷(典型数据:58nC) 低反向传输电容(典型值:20pF) 100%单脉冲雪崩能量试验 无卤素     用途:电源开关电路的适配器和充电器。   特诺半导体有限公司致力于碳化硅技术的发展,主营品牌:MOSFET、IGBT单管/模块、Diode、单片机MCU、集成电路IC、场效应管、MOS管、IC芯片、BJT产品、二极管、SGTMOS,各种集成电路定制化解决方案。特诺半导体针对多个应用领域推出600V/1200V/1350V、15A/25A/45A/60A等多个系列的绝缘栅双极型晶体管IGBT产品,产品根据不用应用频率尔设计。 特诺半导体 官网  https://www.tnsemi.com/  
特诺 TNPF12N65 封装TO-220F
特诺   TNPF12N65    封装TO-220F 硅N沟道增强 VDMOSFETs是通过自对准平面技术获得的 降低了导通损耗,改善了开关性能 性能和增强雪崩能量。晶体管 可用于系统的各种电源开关电路 小型化和高效率。包装形式是 TO-220F,符合RoHS标准。   特点:快速切换 l低导通电阻(Rdson≤0.8Ω)l低栅极电荷(典型数据:40nC) 低反向转移电容(典型值:9.5pF)  100%单脉冲雪崩能量测试 应用:电源开关电路的适配器和充电器。  
对二极管控制电路与故障分析
控制电路的一般分析方法说明 对于控制电路的分析通常要分成多种情况,例如将控制信号分成大、中、小等几种情况。就这一电路而言,控制电压Ui对二极管VD1的控制要分成下列几种情况。   (1)电路中没有录音信号时,直流控制电压Ui为0,二极管VD1截止,VD1对电路工作无影响,第一级录音放大器输出的信号可以全部加到第二级录音放大器中。   (2)当电路中的录音信号较小时,直流控制电压Ui较小,没有大于二极管VD1的导通电压,所以不足以使二极管VD1导通,此时二极管VD1对第一级录音放大器输出的信号也没有分流作用。   (3)当电路中的录音信号比较大时,直流控制电压Ui较大,使二极管VD1导通,录音信号愈大,直流控制电压Ui愈大,VD1导通程度愈深,VD1的内阻愈小。   (4)VD1导通后,VD1的内阻下降,第一级录音放大器输出的录音信号中的一部分通过电容C1和导通的二极管VD1被分流到地端,VD1导通愈深,它的内阻愈小,对第一级录音放大器输出信号的对地分流量愈大,实现自动电平控制。   (5)二极管VD1的导通程度受直流控制电压Ui控制,而直流控制电压Ui随着电路中录音信号大小的变化而变化,所以二极管VD1的内阻变化实际上受录音信号大小控制。     故障检测方法和电路故障分析 对于这一电路中的二极管故障检测最好的方法是进行代替检查,因为二极管如果性能不好也会影响到电路的控制效果。   当二极管VD1开路时,不存在控制作用,这时大信号录音时会出现声音一会儿大一会儿小的起伏状失真,在录音信号很小时录音能够正常。   当二极管VD1击穿时,也不存在控制作用,这时录音声音很小,因为录音信号被击穿的二极管VD1分流到地了。
晶体管越老,功耗却越低?
大家都知道,电子控制系统芯片中的晶体管会伴随着時间而慢慢老化。他们会渐渐地显旧,反映越来越缓慢,问题愈来愈多,乃至忽然奔溃卡死。但是一切都是有多面性,尽管晶体管老化对电子设备并不是好事儿,但其功能损耗却伴随着時间的变化而减少。        在这个节奏快、快消費的时代,大家一直在求进、急于求成。不仅是手机上、电脑上、汽车,就连大家本身,都要想时尚潮流,新朝,不过时。假如想对你说老有老的好,老旧的旧的妙,你一定不可以认可。但客观事实确是这般,大家何不看好多个事例。        大家都了解汽车有一个磨合时间,新汽车在最开始的 2000 千米里程数需要留意磨合期,便于每个构件较为畅顺地符合搭配,使汽车总体性能、使用期和安全驾驶感受达到最佳。实际上人也是一样,并不是一直年青的好,我们知道,大家年轻时代学习培训的专业知识,务必历经人生道路的历炼,必须時间的累积,才可以变为聪慧。那麼,智能机、电脑上等电子设备是不是也是有相近的趣味规律性呢?            一般顾客或许并不关注电脑上 CPU、智能机储存器和汽车主动刹车系统软件的老化难题。可是做为电子控制系统室内设计师或芯片设计方案技术工程师,我们知道这种电子控制系统芯片中的晶体管是会慢慢老化的。跟人与汽车一样,他们会渐渐地显旧,反映越来越缓慢,问题愈来愈多,乃至忽然奔溃卡死。 晶体管 BTI 转变系统对的积极主动功效        一切都是有多面性,尽管芯片中晶体管的老化对电子设备并不是好事儿,但其功能损耗却伴随着時间的变化而减少,它是美国南安普敦高校电子技术专家教授 Bashir Al-Hashimi 在一系列模拟仿真和实验后得到的结果。这名专家教授以及精英团队对晶体管的一种特点—偏压溫度多变性(Bias Temperature Instability,BTI)开展了检测,发觉 BTI 的转变对芯片和系统软件总体系统软件有正脸危害。            什么叫 BTI?简易来说,便是晶体管处在“开”情况时的一种正电荷堆积效用,在晶体管安全通道以及门绝缘层物质中间产生正电荷累积,这会更改晶体管电源开关转换情况的工作电压,伴随着時间的变化晶体管电源开关情况转换姿势会愈来愈慢。伴随着芯片生产商大量选用高 K 电解介质和铝合门原材料,这类偏压多变性愈来愈显著。        Bashir Al-Hashimi 专家教授的精英团队在模拟仿真实验中应用的是高性能 CMOS 逻辑性晶体管,BTI 老化促使这种元器件的具体功能损耗在减少。实验说明,模拟仿真 1 个月的应用,静态数据功能损耗减少大概 50%,10 年减少 78%。静态数据功能损耗是晶体管不工作中时耗费的动能,它是因为晶体管安全通道上的电流量泄露造成的。而在现如今的芯片设计方案中,晶体管绝大多数时间处在这类情况,因而由 BTI 产生的功能损耗减少是比较显著的。        在具体芯片检测中,应用 5 年之后漏电流大概减少 11%。具体的电子控制系统功能损耗减少可否做到期待的水平还不知道,但最少晶体管老化与功能损耗减少的关联理论上是说得通的。这是不是代表着智能机使用时间越长,充电电池续航力性能反倒越好呢?        如果我们由此得到那样的结果,难免过度果断。终究智能机的充电电池续航力性能和使用期在于多种多样要素,例如充电电池自身的原材料和性能、电池管理技术性、电脑操作系统、安裝的 APP 手机软件和客户应用习惯性等。顾客要求和市场需求一直驱动器着手机制造商和芯片经销商不断更新迭代,新品取代周期时间愈来愈短,在那样的自然环境下顾客和店家系统对芯片的老化效用不容易关心的。可是,大家技术工程师在设计方案芯片和智能产品商品时,却迫不得已考虑到其危害。 芯片里程数        明尼苏达高校电气专业专家教授 Chris H. Kim 早在 10 很多年前就刚开始对晶体管老化对芯片和电子控制系统的危害刚开始开展科学研究和实验。他最开始明确提出了“芯片里程数(Odometer for silicon chip)”的定义,并开发设计出一种电源电路用以精确测量很有可能危害芯片性能的晶体管老化指标值,他期待能将这类电源电路集成化进微控制器芯片设计方案中,以帮助微控制器自动识别运行性能,根据平衡几类老化指标值来让芯片自始至终处在最好性能情况。Kim 专家教授以及精英团队在芯片里程数层面的科学研究早已成效显著,半导体材料科学研究企业授于其 2016 年非凡技术奖就是半导体材料业内对其科学研究的毫无疑问。        芯片里程数能够精确测量晶体管老化的三个指标值:热载流子引入(HCI)、偏压溫度多变性(BTI)、经时介质击穿(TDDB)。BTI 上文早已表述过,HCI 就是指晶体管产生情况转换时的老化,正电荷停留在晶体管门物质上,那样元器件电源开关变换的工作电压就会更改。BTI 和 HCI 或许对芯片一切正常工作中沒有显著的危害,但 TDDB 就会造成毁灭性的难题,伴随着晶体管的老化,各种各样缺点会在门物质上沉积,堆积到一定水平就会造成短路故障,进而造成 芯片乃至全部崩溃。这就跟人一样,伴随着年纪的提升,身体机能刚开始老化,各种各样病症刚开始出現,比较严重时乃至造成癌病。        Kim 专家教授明确提出的“芯片里程数”定义以及相对的精确测量电路原理早已造成半导体业的高度重视,包含 Intel、TI 和 IBM 以内的芯片生产商早已在其芯片开发设计中考虑到晶体管老化的危害,已经采用适度的方法来赔偿由于老化造成 的芯片性能降低。或许迅速在新的芯片中,就会集成化相近“芯片里程数”的程序模块。        伴随着芯片设计方案和生产制造加工工艺的发展趋势,及其智能产品的电脑操作系统和手机软件的完善,将来的智能产品在比较有限的供电系统自然环境下依然可以不断工作中很多年,或许这要一部分得益于“芯片里程数”。在我们已不为了更好地追逐时尚潮流而经常更换手机时,大家很有可能会应用一部心爱的手机上超出 3 年,手机上的续航能力居高不下也许就不奇怪了。
MOS管拆装步骤
        一、枪温度调试,把风枪调到 320 度,风速 1 档,MOS 管属于小型玻璃管 , 容易夹裂,所以在拆的时候一定要小心 , 撬的时候用力一定轻 , 要顾及周围的元器件不能碰到 , 如果有带胶的芯片需要避开 , 吹的过程中风枪不能停留太久。   二、撬 MOS 管的时候要用锋利一点的刀片 , 把刀片放在 MOS 管下面 , 用手指往上带一点力度 , 风枪一直对着吹 , 待锡刚融化时 MOS 管会自然脱落。   三、MOS 管属于带胶芯片 , 撬下来时需要对主板进行除胶 , 除胶的时候要小心不能太大力度 , 不然会掉点 , 除胶用镊子尖去轻轻刮就好了 , 或者用斜口刀进行刮胶 , 把主板焊盘上所有的胶都清理干净 。       四、放少量焊油用烙铁把焊盘拖均匀 , 不能有明显的高低不平 , 用洗板水把焊盘清洗干净。   五、芯片除胶 , 小芯片用烙铁尖刮胶就可以了   六、MOS 拆下来也是需要植锡的 , 用纸巾把刮锡刀上面的锡膏多余的焊油吸干(尽量干一点),把植锡网洗干净(每个小孔都不能有异物),把 MOS 管铺在一块纸巾上面,用植锡网对准   往上面涂锡膏,抹均匀干净以后用无尘布来回擦一擦,把风枪调到 280°,风速全部关掉,风枪口从远到进慢慢在植锡网上移动 , 植好锡以后取下时要小心 , 用镊子在锡珠处轻轻从上往下顶 , 取下时放少量焊油 , 用风枪吹待锡珠全部归位。       七、装 MOS 管是有脚位的,在 MOS 管的背面都有一个小点,称为脚,在拆下时是需要看方向的,如果忘记了该怎么办,找一个板来对比 , 没有板在图纸或者位号图里面查找方向。   八、把焊盘放少量焊油,焊油太多会移位,把 MOS 管用镊子夹到需要焊接的主板上,方向摆好,风枪温度同样是 320 度,风速 1 档,对准 MOS 管吹焊时间在 15 秒,待锡珠融化后用镊子轻轻触碰 ,MOS 管会自动复位就说明已经焊好。
对集成电路作出正确判断
如何准确判断电路中集成电路IC是否“偷懒”没处在工作状态,是好是坏是修理电视、音响、录像设备的一个重要内容,判断不准,往往花大力气换上新集成电路而故障依然存在,所以要对集成电路作出正确判断。 1、首先要掌握该电路中IC的用途、内部结构原理、主要电特性等,必要时还要分析内部电原理图。除了这些,如果再有各引脚对地直流电压、波形、对地正反向直流电阻值,那么,对检查前判断提供了更有利条件;2、然后按故障现象判断其部位,再按部位查找故障元件。有时需要多种判断方法去证明该器件是否确属损坏。3、一般对电路中IC的检查判断方法有两种:一是不在线判断,即电路中IC未焊入印刷电路板的判断。这种方法在没有专用仪器设备的情况下,要确定该电路中IC的质量好坏是很困难的,一般情况下可用直流电阻法测量各引脚对应于接地脚间的正反向电阻值,并和完好集成电路进行比较,也可以采用替换法把可疑的集成电路插到正常设备同型号集成电路的位置上来确定其好坏。当然有条件可利用集成电路测试仪对主要参数进行定量检验,这样使用就更有保证。   ​   还有在线检查判断,即集成电路连接在印刷电路板上的判断方法。在线判断是检修集成电路在电视、音响、录像设备中最实用的方法。以下分几种情况进行阐述:1、直流工作电压测量法:  主要是测出各引脚对地的直流工作电压值;然后与标称值相比较,依此来判断集成电路的好坏。用电压测量法来判断集成电路的好坏是检修中最常采用的方法之一,但要注意区别非故障性的电压误差。测量集成电路各引脚的直流工作电压时,如遇到个别引脚的电压与原理图或维修技术资料中所标电压值不符,不要急于断定集成电路已损坏,应该先排除以下几个因素后再确定。1)所提供的标称电压是否可靠,因为有一些说明书,原理图等资料上所标的数值与实际电压有较大差别,有时甚至是错误的。此时,应多找一些有关资料进行对照,必要时分析内部原理图与外围电路再进行理论上的计算或估算来证明电压是否有误。2)要区别所提供的标称电压的性质,其电压是属哪种工作状态的电压。因为集成块的个别引脚随着注入信号的不同而明显变化,所以此时可改变波段或录放开关的位置,再观察电压是否正常。如后者为正常,则说明标称电压属某种工作电压,而这工作电压又是指在某一特定的条件下而言,即测试的工作状态不同,所测电压也不一样。3)要注意由于外围电路可变元件引起的引脚电压变化。当测量出的电压与标称电压不符时可能因为个别引脚或与该引脚相关的外围电路,连接的是一个阻值可变的电位器或者是开关(如音量电位器、亮度、对比度、录像、快进、快倒、录放开关、音频调幅开关等)。这些电位器和开关所处的位置不同,引脚电压会有明显不同,所以当出现某一引脚电压不符时,要考虑引脚或与该引脚相关联的电位器和开关的位置变化,可旋动或拔动开头看引脚电压能否在标称值附近。4)要防止由于测量造成的误差。由于万用表表头内阻不同或不同直流电压档会造成误差。一般原理上所标的直流电压都以测试仪表的内阻大于20KΩ/V进行测试的。内阻小于20KΩ/V的万用表进行测试时,将会使被测结果低于原来所标的电压。另外,还应注意不同电压档上所测的电压会有差别,尤其用大量程档,读数偏差影响更显著。5)当测得某一引脚电压与正常值不符时,应根据该引脚电压对IC正常工作有无重要影响以及其他引脚电压的相应变化进行分析,才能判断IC的好坏。6) 若IC各引脚电压正常,则一般认为IC正常;若IC部分引脚电压异常,则应从偏离正常值最大处入手,进口泵检查外围元件有无故障,若无故障,则IC很可能损坏。7)对于动态接收装置,如电视机,在有无信号时,IC各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随信号大小和可调元件不同位置而变化的反而不变化,就可确定IC损坏。8)对于多种工作方式的装置,如录像机,在不同工作方式下,IC各引脚电压也是不同的。2、交流工作电压测量法: 为了掌握IC交流信号的变化情况,可以用带有dB插孔的万用表对IC的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入dB插孔;对于无dB插孔的万用表,需要在正表笔串接一只0.1~0.5uF隔直电容。该法适用于工作频率比较低的IC,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,或者作为有无。   总的来说,在进行集成块直流电压或直流电阻测试时要规定一个测试条件,尤其是要作为实测经验数据记录时更要注意这一点。通常把各电位器旋到机械中间位置,信号源采用一定场强下的标准信号,当然,如能再记录各功能开关位置,那就更有代表性。如果排除以上几个因素后,所测的个别引脚电压还是不符标称值时,需进一步分析原因,但不外乎两种可能。一是集成电路本身故障引起;二是集成块外围电路造成。分辨出这两种故障源,也是修理集成电路家电设备的关键。
  • 1
  • 2
MOS管和IGBT管的定义及辨别
MOS管和IGBT管作为现代电子设备使用频率较高的新型电子器件,因此在电子电路中常常碰到也习以为常。可是MOS管和IGBT管由于外形及静态参数相似的很,有时在选择、判断、使用容易出差池。MOS管和IGBT管可靠的识别方法为选择、判断、使用扫清障碍!MOS管MOS管即MOSFET,中文名金属氧化物半导体绝缘栅场效应管。其特性,输入阻抗高、开关速度快、热稳定性好、电压控制电流等特性。 IGBT管IGBT中文名绝缘栅双极型场效应晶体管,是MOS管与晶体三极管的组合,MOS是作为输入管,而晶体三极管作为输出管。于是三极管的功率做的挺大,因此两者组合后即得到了MOS管的优点又获得了晶体三极管的优点。  综上所述的两种晶体管,是目前电子设备使用频率很高的电子元器件,两者在外形及静态参数极其相似,某些电子产品是存在技术垄断,在电路中有时它们的型号是被擦掉的,截止目前,它们在命名标准及型号统又没有统一标准,而外型及管脚的排列相似,根本无规律可循,成为维修过程中的拦路虎,如何区分和判断成为必要手段。MOS管和IGBT管的辨别带阻尼的NPN型IGBT管与N沟道增强型MOMS管的识别带阻尼的NPN型IGBT管与N沟道增强型MOMS管它们的栅极位置一样,IGBT管的C极位置跟MODS管的D极位置相对应,IGBT管的e极位置跟MODS管的S极位置相对应,对它们的好坏判断及及区分可以用动静态测量方法来完成。静态测量判断MOS管和IGBT管的好坏先将两个管子的管脚短路放掉静电,MOS管的D极与S极之间有个PN接,正向导通反向截止,于是有Rgd=Rgs=Rds=无穷大,Rsd=几千欧。IGBT管的G极到c、e极的电阻应为无穷大,即Rgc=Rge=无穷大,而IGBT管的之间有阻尼二极管的存在,因此具有单向导电反向截止特性,即Rce=无穷大,Rec=几千欧。从这里只能用万用表的电阻档判断出管子的好坏,却区分不出是那种管子。测量得阻值很小,则说明管子被击穿,测量阻值很大,说明管子内部断路。动态测量区分MOS管和IGBT管先用万用表给管子的栅极施加电压,是场效应管建立起沟道,然后测量D、S及c、e之间的阻值,根据阻值的差异来区分MOS管和IGBT管。用万用表的电阻档测量两个管子的D、S及c、e之间的电阻,由于场效应管已经建立沟道,Rds=Rsd≈0,而Rce之间呈现电阻Rce,晶体三极管处于放大状态的导通电阻,Rec为内部阻尼二极管的导通电阻,两者均为几千欧。因此根据测量可知,两个管子的导通程度不一样,MOS管的D、S之间电阻值是远小于IGBT管c、e之间的电阻值,于是可以分辨出MOS与IGBT管。
电子元器件采购基础知识
一、电子元器件基础知识      电子元器件是电子元器件和电中小型的设备、仪器设备的构成部分,其自身常由多个零件组成,能够在同行业中通用性;喻指家用电器、无线通信、仪表盘等工业生产的一些零件,如电容、三极管、游丝、配件等子元器件的统称。电子元器件基础知识,作为一位电子元器件的采购,不单单是需要灵活的业务能力,还更需要掌握电子元器件的一些硬件的东西。如电子元器件的分类、型号识别、用途等专业基础知识,才能为企业提供更好、更专业的采购建议。那接下来就给大家盘点一些关于电子元器件基础知识。     二、电子元器件的分类 用于制造或组装电子整机用的基本零件称为电子元器件,元器件是电子电路中的独立个体。 1、主动元件与被动元件 主动元件指当获得能量供给时能够对电信号激发放大、振荡、控制电流或能量分配等主动功能甚至执行数据运算、处理的元件。主动元件包括各式各样的晶体管、集成电路(ic)、影像管和显示器等。被动元件相对于主动元件来说的,是指不能对电信号激发放大、振荡等,对电信号的响应是被动顺从的,而电信号按原来的基本特征通过电子元件。最常见电阻、电容、电感等就是被动元件。 有源元器件与无源元器件有源元器件对应的是主动元件。如果电子元器件工作时,其内部有电源在,则这种器件叫做有源器件,需要能量的来源而实现它特定的功能。有源器件自身也消耗电能,大功率的有源器件通常加有散热器。与无源元件相对应的是被动元件。电阻、电容和电感类元件在电路中有信号通过就能完成规定功能,不需要外加激励电源,所以称为无源器件。无源器件自身消耗电能很小,或把电能转变为不同形式的其他能量。 二、电子元器件基础知识-分立元器件与集成电路 半导体产业中有两大分支:集成电路和分立器件。分立元器件是与集成电路相对而言的,半导体分立器件,泛指半导体晶体二极管、半导体三极管简称三极管、三极管及半导体特殊器件,是功能单一、“最小”的元件,内部不再有其它元件功能单元。集成电路(ic integrated circuit)是一种把一类电路中所需的晶体管、阻容感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,封装为一整体,具有电路功能的电子元器件。   三、常用电子元器件的识别 1、 电阻 电子元器件基础知识之电阻。电阻器我们习惯称之为电阻,是电子设备中最常应用的电子元件, 电阻在电路中用“r”加数字表示,如:r13表示编号为13的电阻。电阻在电路中的主要作用为分流、限流、分压偏置、滤波(与电容器组合使用)和阻抗匹配等。 参数识别:电阻的单位为欧姆(ω),倍率单位有:千欧(kω),兆欧(mω)等。换算方法是:1兆欧(mω)=1000千欧(kω)=1000000欧。电阻的参数标注方法有3种,即直标法、色标法和数标法。 1.1、数标法主要用于贴片等小体积的电路,如:472 表示 47×100ω=即4.7k;103 表示10000ω(10后面加三个0)也就是10kω 1.2、色环标注法使用最多,第一道色环表示阻值的最大一位数字,第二道色环表示第二位数字,第三道色环表示阻值未应该有几个零,第四道色环表示阻值的误差。       2、 电容 电子元器件基础知识之电容。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容在电路中一般用“c”加数字表示,如c223表示编号为223的电容电容的特性主要是隔直流通交流。电容器的主要参数也有两个,标称电容量和允许误差。 2.1、标称电容量,指电容器上标注的电容量,电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗xc=1/2πf c (f表示交流信号的频率,c表示电容容量)。 2.2、识别方法:电容的识别方法与电阻的识别方法基本相同,也分直标法、色标法和数标法三种。电容的基本单位用法拉(f)表示,其它单位还有:毫法(mf)、微法(uf)、纳法(nf)、皮法(pf)。其中:1法拉=103毫法=106微法=109纳法=1012皮法。 2.3、直标法:容量大的电容其容量值在电容上直接标明,如2200 uf/10v 2.4、数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。如:102表示10×102pf=1000pf。 3、 电感 电子元器件基础知识之电感。电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成。直流可通过线圈,直流电阻就是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈两端将会产生自感电动势。 自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感的特性是通直流阻交流,频率越高,线圈阻抗越大。电感在电路中可与电容组成振荡电路。电感在电路中常用“l”加数字表示,如:l3表示编号为3的电感。电感一般有直标法和色标法,色标法与电阻类似。电感的基本单位为:亨(h) 换算单位有:1h=103mh=106uh。 4、 晶体二极管 二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。晶体二极管在收音机中对无线电波进行检波,在电源变换电路中把交流电变换成为脉动直流电,在数字电路中充当无触点开关等,都是利用了它的单向导电特性。晶体二极管按作用可分为:整流二极管(如1n4004)、隔离二极管(如1n4148)、肖特基二极管(如bat85)、发光二极管、稳压二极管等。 4.1、识别方法:二极管的识别很简单,小功率二极管的n极(负极),在二极管外表大多采用1种色圈标出来,有些二极管也用二极管专用符号来表示p极(正极)或n极(负极),也有采用符号标志为“p”、“n”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 4.2、主要参数:额定正向工作电流是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。最高反向工作电压,加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。
解读MOS管驱动电路
MOS管导通特性 1、导通的意思是做为开关,等同于开关合闭。 2、NMOS的特性,Vgs超过一定的值就会导通,适用源极接地装置的状况(中低端驱动),要是栅极电压做到4V或10V就可以了。 3、PMOS的特性,Vgs低于一定的值就会导通,适用源极接Vcc的状况(高档驱动)。可是,尽管PMOS能够很便捷的作为高档驱动,但因为导通电阻器大,价钱贵,更换类型少等缘故,在高档驱动中,一般還是用NMOS。   MOS开关管损害 1、导通耗损指整流管从截止到导通时,所造成的输出功率耗损。无论是NMOS還是PMOS,导通后都是有导通电阻器存有,那样点电流量就会在这个电阻器上耗费动能,这些耗费的动能称为导通耗损。挑选导通电阻器小的MOS管会减少导通耗损,如今的小输出功率MOS管导通电阻器一般在几十毫伏上下。 2、MOS在导通和截至的情况下,一定并不是在一瞬间进行的。MOS两边的电压有一个降低的全过程,穿过的电流量有一个升高的全过程,在这段时间内,MOS管的损害时电压和电流量的相乘,称为开关损害。一般开关损害比导通损害大很多,并且开关頻率越快,损害也越大。 3、导通一瞬间电压和电流量的相乘非常大,导致的损害也非常大。减少开关時间,能够减少每一次导通时的损害,减少开关頻率,能够减少单位时间内的开关频次。这二种方法都能够减少开关损害。 4、软开关技术性,该电源电路是在全桥整流电路中添加电容器和二极管。二极管在开关管导通时起钳位功效, 并组成泻放控制回路, 泻放电流量。电容器在反激电压功效下, 电容器被电池充电, 电压不可以忽然提升, 当电压较为大的時候, 电流量早已为0。那样能够使开关耗损不大。       MOS管驱动 1、跟双旋光性晶体三极管对比,一般觉得使MOS管导通不用电流量,要是GS电压高过一定的值,就可以了 2、在MOS管的构造中能够见到,在GS、GD中间存有寄生电容,而MOS管的驱动,事实上便是对电容器的蓄电池充电。对电容器的电池充电必须一个电流量,由于电容器电池充电一瞬间能够把电容器当做短路故障,因此 一瞬间电流量会较为大。挑选/设计方案MOS管驱动时要留意的是可出示一瞬间短路容量的尺寸。 3、广泛用以高档驱动的NMOS,导通时必须是栅极电压超过源极电压。而高档驱动的MOS管导通时源极电压和漏极电压(Vcc)同样,因此 它是栅极电压要比Vcc大4V或10V。假如在同一个系统软件里,要获得比Vcc大的电压,就需要专业的升压电路了。许多 电机驱动器都集成化了电荷泵,要留意的是应当挑选适合的外置电容器,以获得充足的短路容量去驱动MOS管。 4、上面说的4V或10V是常见的MOS管的导通电压,设计方案时自然必须有一定的容量。并且电压越高,导通速率越快,导通电阻器也越小。如今也是有导通电压更小的MOS有用在不一样的行业,但在12V轿车电子控制系统里,一般4V导通就足够了。     MOS管运用电源电路 MOS管最明显的特性是开关特性好,因此 被广泛运用于必须电子器件开关的电源电路中,普遍的如开关开关电源和电机驱动电源电路,也是有照明灯具变光。如今的MOS驱动,几个尤其的要求:   1. 底压运用 当应用9V开关电源,此刻假如应用传统式的图腾柱构造,因为三极管的be仅有0.7V上下的损耗,造成 具体最后载入gate上的电压仅有4.3V,此刻,大家采用允差gate电压4.9V的MOS管就存有一定的风险性。一样的难题也产生在应用3V或是别的底压开关电源的场所。   2. 宽电压运用 键入电压并并不是一个数值,它会伴随着時间或是别的要素而变化。这一变化造成 PWM电路出示给MOS管的驱动电压不是平稳的。为了更好地让MOS管在高gate电压下安全性,许多 MOS管内嵌了稳压极管强制限定gate电压的幅度值。在这类状况下,当出示的驱动电压超出稳压极管的电压,就会造成很大的静态数据功能损耗。另外,假如简易的用电阻分压的基本原理减少gate电压,就会出現键入电压较为高的情况下,MOS管工作中优良,而键入电压减少的情况下gate电压不够,造成导通不足完全,进而提升功能损耗。   3、在电源模块中,常见的是开关电源IC立即驱动MOS管。应用中,应当留意较大 驱动最高值电流量、MOS管的寄生电容2个主要参数。这儿,开关电源IC的驱动工作能力、MOS寄生电容尺寸、驱动电阻器电阻值都将危害MOS管开关速率。假如挑选MOS管寄生电容较为大,开关电源IC內部的驱动工作能力又不够时,必须在驱动电源电路上提高驱动工作能力,常应用图腾柱电源电路提升开关电源IC驱动工作能力。现阶段,各式各样的MOS管驱动电源电路并沒有一种驱动电源电路是最好是的,必须客户依据实际运用,融合MOS管生产商出示的使用手册,持续对电源电路及主要参数开展提升,才可以打磨抛光出最好自身运用的驱动计划方案来。
功率半导体器件的研究意义
功率半导体器件是电力电子技术及其应用装置的基础,是推动电力电子变换器发展的主要源泉。功率半导体器件处于现代电力电子变换器的心脏地位,它对装置的可靠性、成本和性能起着十分重要的作用。40年来,普通晶闸管(Thyristor,SCR)、门极关断晶闸管(GTO)和绝缘栅双极型晶体管(IGBT)先后成为功率半导体器件的发展平台。能称为“平台”者,一般是因为它们具备以下几个特点:①长寿性,即产品生命周期长;②渗透性,即应用领域宽;③派生性,即可以派生出多个相关新器件家属。 电力电子变换器的功率等级覆盖范围非常广泛,包括小功率范围(几W到几kW),如笔记本电脑、冰箱、洗衣机、空调等;中功率范围(10kW到几MW),如电气传动、新能源发电等;大功率范围(高达几GW),如高压直流(HVDC)输电系统等。     电力电子变换器的应用领域越来越广泛,同时也对功率半导体器件提出了更高的性能需求。继前些年推出集成门极晶闸管(IGCT)和电子注入增强型栅极晶体管(IEGT)后,如今采用碳化硅(SiC)和氮化镓(GaN)材料的新型功率器件已经应运而生。目前,功率半导体的发展主要是其功率承受能力和开关频率之间的矛盾,往往功率越大,耐压越高,允许的开关频率就越低。从功率半导体器件的个体来说,大功率和高频化仍是现阶段发展的两个重要方向。 功率半导体器件应用需要考虑大功率电路应用的特性,如绝缘、大电流能力等,在实际应用中,以动态的“开”和“关”为运行特征,一般不运行在放大状态。由功率半导体器件构成的电力电子变换器实施的是电磁能量转换,而不是单纯的开/关状态,它的很多非理想应用特性在电力电子变换器中起着举足轻重的作用。要用好功率半导体器件,既要熟悉电力电子变换器的拓扑,更要充分掌握器件本身的特性。
详解何为IGBT
一说起IGBT,半导体制造的人都以为不就是一个分立器件(Power Disceret)嘛,都很瞧不上眼。然而他和28nm/16nm集成电路制造一样,是国家“02专项”的重点扶持项目,这玩意是现在目前功率电子器件里技术最先进的产品,已经全面取代了传统的Power MOSFET,其应用非常广泛,小到家电、大到飞机、舰船、交通、电网等战略性产业,被称为电力电子行业里的“CPU”,长期以来,该产品(包括芯片)还是被垄断在少数IDM手上(FairChild、Infineon、TOSHIBA),位居“十二五”期间国家16个重大技术突破专项中的第二位(简称 “02专项”)。 究竟IGBT是何方神圣?让我们一起来学习它的理论吧。 1、何为IGBT? IGBT全称为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),所以它是一个有MOS Gate的BJT晶体管。奇怪吧,它到底是MOSFET还是BJT?其实都不是又都是。不绕圈子了,他就是MOSFET和BJT的组合体。 我在前面讲MOSFET和BJT的时候提到过他们的优缺点,MOSFET主要是单一载流子(多子)导电,而BJT是两种载流子导电,所以BJT的驱 动电流会比MOSFET大,但是MOSFET的控制级栅极是靠场效应反型来控制的,没有额外的控制端功率损耗。所以IGBT就是利用了MOSFET和BJT的优点组合起来的,兼有MOSFET的栅极电压控制晶体管(高输入阻抗),又利用了BJT的双载流子达到大电流(低导通压降)的目的 (Voltage-Controlled Bipolar  Device)。从而达到驱动功率小、饱和压降低的完美要求,广泛应用于600V以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。     2、传统的功率MOSFET 为了等一下便于理解IGBT,我还是先讲下Power MOSFET的结构。所谓功率MOS就是要承受大功率,换言之也就是高电压、大电流。我们结合一般的低压MOSFET来讲解如何改变结构实现高压、大电流。     1)高电压:一般的MOSFET如果Drain的高电压,很容易导致器件击穿,而一般击穿通道就是器件的另外三端(S/G/B),所以要解决高压问题必须堵死这三端。Gate端只能靠场氧垫在Gate下面隔离与漏的距离(Field-Plate),而Bulk端的PN结击穿只能靠降低PN结两边的浓度,而最讨厌的是到Source端,它则需要一个长长的漂移区来作为漏极串联电阻分压,使得电压都降在漂移区上就可以了。 2) 大电流:一般的MOSFET的沟道长度有Poly CD决定,而功率MOSFET的沟道是靠两次扩散的结深差来控制,所以只要process稳定就可以做的很小,而且不受光刻精度的限制。而器件的电流取决于W/L,所以如果要获得大电流,只需要提高W就可以了。 所以上面的Power MOSFET也叫作LDMOS (Lateral Double diffusion MOS)。虽然这样的器件能够实现大功率要求,可是它依然有它固有的缺点,由于它的源、栅、漏三端都在表面,所以漏极与源极需要拉的很长,太浪费芯片面积。而且由于器件在表面则器件与器件之间如果要并联则复杂性增加而且需要隔离。所以后来发展了VDMOS(Vertical DMOS),把漏极统一放到Wafer背面去了,这样漏极和源极的漂移区长度完全可以通过背面减薄来控制,而且这样的结构更利于管子之间的并联结构实现大功率化。但是在BCD的工艺中还是的利用LDMOS结构,为了与CMOS兼容。 再给大家讲一下VDMOS的发展及演变吧,最早的VDMOS就是直接把LDMOS的Drain放到了背面通过背面减薄、Implant、金属蒸发制作出来的,他就是传说中的Planar VDMOS,它和传统的LDMOS比挑战在于背面工艺。但是它的好处是正面的工艺与传统CMOS工艺兼容,所以它还是有生命力的。但是这种结构的缺点在于它沟道是横在表面的,面积利用率还是不够高。
低功耗MCU在家电中越来越普遍
在智能家电产品通电后,MCU就开始启动,由于MCU所消耗的电流只占整个家电产品消耗功率的很小一部分,所以通常对其工作电流大小不作要求,只要产品可以正常工作即可。一直到近几年,由于人们日益重视环保,市场上开始关注节能低碳的电子产品,对家电及电子产品的低耗能也提高了要求,因此低功耗MCU在家庭的各种电器产品上开始占据重要地位。   低功耗MCU的需求原因   在电子产品上需要低功耗MCU的原因大部分出自环保的考虑:一方面,地球温室效应造成的问题需要大家通过节约能源来解决;另一方面,大量的电池若没有按正常渠道回收可能会造成土地和水资源污染。具体来说,低功耗MCU的需求可以归纳为以下几种情况。   1. 一般家电电源来自电源插头,当插头插在插座上,即使家电没有启用也会消耗一些功率,通常来说这些消耗的功率越少越好。   2. 家电若具有时钟功能,则当插头离开插座后,时钟所需的电源需靠内部电池提供,因此电池必须能够维持较长时间。   3. 具有遥控功能的电器需维持较低的待机电流。   4. 使用电池供电的电器用品其电池使用寿命要越长越好。   5. 使用太阳能电池来代替使用一般电池的电子产品。 许多家电、音响、电视都会有遥控器接收电路,以方便使用该电器的各种选项及设定功能。当这些电器关闭时,并不是完全关闭电源,遥控器的接收电路还在继续工作,除非把插头拔掉,否则待机电流一直存在,这也会造成能源的浪费。若是能把此时的耗电降至,对节能省电也有不小的帮助,接收遥控器电路的MCU如果本身使用低功耗MCU就是降低此时待机电流的好方法。       为了能够随时侦测到遥控器发射的红外线载波信号,红外线的接收电路必须永远保持工作状态,为此基本的耗电是免不了的,节能的可行方法是将MCU的系统频率降低,让MCU运行在可以接受红外线遥控器信号的工作频率,从而节省其工作时的耗电。      家用电器的省电设计构思       对使用电池的产品而言,在符合成本的原则下,应选择消耗功率的MCU,因为电池废弃物的处理对环境影响很大,且电池内部的重金属会污染水资源及土地。比如家庭中厨房秤、遥控器以及某些具有时钟功能的小家电都会使用到电池,若是使用低功耗MCU,则可以减少电池用量,从而减少环境污染。减少电池用量可以从降低MCU的工作电流做起,同样功能的MCU,若是选择消耗电流减少一半的,则电池使用寿命将增加一倍,这样不仅减少购买电池的费用,也减少了电池的使用量。   太阳能电池,这可更进一部减少电池的用量,对环境保护将发挥的效果。我们常看到一些电子计算器使用太阳能来供电,如果低功耗MCU工作的电流及电压都大幅降低,则也有机会使用太阳能电池。在功耗需求较低的产品上,如温度计、湿度计、体温计、电子表、LCD显示电子钟等,使用小瓦数的太阳能电池就足够应付MCU所消耗的电流。太阳能是环保的能源,只要有太阳,产品就可以工作,不需担心电池耗尽问题,也不需更换电池,因而也不会造成环境污染。 特诺半导体有限公司,定制单片机开发项目,针对小家电、生活电器、数码设备、无线设备等项目开发,都有属于自己独到的理解,如果你有其他的需要,例如功能的定制、方案的定制等 单片机_MCU_微型控制器—特诺半导体   特诺半导体专注于研发高抗干扰性、高可靠性的通用型和专用型的8位和32位微控制器产品(MCU),并为客户提供相关的应用开发工具和解决方案。
N沟MOS晶体管与工作原理
N沟MOS晶体管金属-氧化物-半导体(Metal-Oxide-SemIConductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS集成电路。  由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。     NMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。NMOS集成电路大多采用单组正电源供电,并且以5V为多。CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,R的取值一般选用2~100KΩ。N沟道增强型MOS管的结构在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。它的栅极与其它电极间是绝缘的。图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。 N沟道增强型MOS管的工作原理(1)vGS对iD及沟道的控制作用① vGS=0 的情况从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。② vGS>0 的情况若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。(2)导电沟道的形成:当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。开始形成沟道时的栅——源极电压称为开启电压,用VT表示。上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。
电子元器件损坏原因及查找方法
电气设备的故障多由元器件坏损而致,其他原因引起电子产品的故障也常常造成 电子元器件的损坏,导致机器设备不可以工作中。因此,要想辨别电子元器件的优劣,那把握元器件损坏的原因、特性及主要表现,对搜索故障点和恢复机器设备是十分关键的。下边就为大伙儿详细介绍几类常见电子元器件损坏原因及查找方法。       一、电阻损坏的特点 电阻是电器设备中数量最多的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。前两种电阻应用最广,其损坏的特点:一是低阻值(100Ω以下)和高阻值(100kΩ以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。线绕电阻一般用作大电流限流,阻值不大。圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹。水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹。保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。 二、电解电容损坏的特点 电解电容在电器设备中的用量很大,故障率很高。电解电容损坏有以下几种表现: 1、是完全失去容量或容量变小; 2、是轻微或严重漏电; 3、是失去容量或容量变小兼有漏电。 查找损坏的电解电容方法有: (1)看:有的电容损坏时会漏液,电容下面的电路板表面甚至电容外表都会有一层油渍,这种电容绝对不能再用;有的电容损坏后会鼓起,这种电容也不能继续使用; (2)摸:开机后有些漏电严重的电解电容会发热,用手指触摸时甚至会烫手,这种电容必须更换; (3)电解电容内部有电解液,长时间烘烤会使电解液变干,导致电容量减小,所以要重点检查散热片及大功率元器件附近的电容,离其越近,损坏的可能性就越大。 三、集成电路损坏的特点 集成电路内部结构复杂,功能很多,任何一部分损坏都无法正常工作。集成电路的损坏也有两种:彻底损坏、热稳定性不良。彻底损坏时,可将其拆下,与正常同型号集成电路对比测其每一引脚对地的正、反向电阻,总能找到其中一只或几只引脚阻值异常。对热稳定性差的,可以在设备工作时,用无水酒精冷却被怀疑的集成电路,如果故障发生时间推迟或不再发生故障,即可判定。通常只能更换新集成电路来排除。
  • 1
  • 2